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k Abstract
'y )

Vedw, dy = h{z)dt + Vedv, and obtain limo elog ¢*(z,t) = ~W(z,t)
for unnormalised conditional densities ¢*(z,t) using PDE methods. Here,
W(z,t) is the value function for a deterministic optimal control problem
arising in Mortensen’s deterministic estimation, and is the unique viscosity

solution of a Hamilton-Jacobi-Bellman equation. Hijab has also studjed

this filtering problem, and we extend his large deviation result for certain
i variational problem cor-

" We consider the asymptotic nonlinear filtering problem dz = f(z)dt +

- A
AR

. unnormalised conditional measures. The resuiting
kD responds to the above control problem.
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1 Introduction

An important problem in nonlinear system theory is the construction of
observers for control systems of the form

TR SN o -

s
ol

: i = f(zu), 1)
o y = hlz).

Baras and Krishnaprasad /1! have proposed a method for constructing an

! observer as a limit of nonlinear filters for a family of associated filtering

Qe problems (3), parameterised by ¢ > 0. More recent work in this direction is

presented in Baras, Bensoussan and James |2]. It is of interest then to study
the asymptotic behaviour of the corresponding unnormalised conditional
densities ¢*(z,t) as ¢ — 0, via the Zakai equation (5). We obtain the
asymptotic formula

q'(z,t) - c—f(W(:.!)-o»o(l))’ (2)

as ¢ — 0, where W (z,t) is the value function corresponding to a determin-
istic optimal contro! problem, namely that arising in deterministic estima-
tion.

Hijab [10; has studied this asymptotic estimation problem, and obtained
a WKB expansion when W (z,t) is smooth. This identifies the limiting filter
as Mortensen’s deterministic or minimum energy estimator [13]. In addi-
tion, Hijab {11] has proved a large deviation principle for the conditional
measures for the filtering problem (3). We extend Hijab’s large deviation
result by allowing random initial conditions in (3), and observe that the
resulting variational problem (c.f. action functional ) is exactly the optimal
control problem mentioned above.

The asymptotic formula for the unnormalised conditional densities
(Theorem 5.1) and the large deviation principle for the unnormalised con-
ditional measures (Theorem 6.2) characterise the limiting filter in terms of
the deterministic estimator.

Our method is inspired by the work of Fleming and Mitter (6], and Evans
and Ishii [5]. A logarithmic transformation is applied to the robust form
of the Zakai equation, yielding a Hamilton-Jacobi equation in the limit. A
related Hamilton-Jacobi equation is interpreted as the Bellman equation
for the deterministic estimation optimal control problem, of which W (z,t)

.o A
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is the unique viscosity solution. In particular, W(z,?) is not assumed to be
smooth.

Acknowledgements: We wish to thank Professor L. C. Evans for his
time and invaluable assistance. We also thank Dr Alan Weiss for his useful
comments regarding large deviations.

2 Problem Formulation

We consider a family of diffusion processes in IR™ with real valued obser-
vations:

dz'(t) = f(z'(t))dt + Vedu(t), z°(0) = i, (3)
dy‘(t) = h(z*(t))dt + Vedv(t), ¥*(C) = O.

Here w, v are independent Wiener processes independent of the initial
conditions z{, which have (unnormalised) densities

gi(z) = Ceemt5ol® (4)

where lim,.oelogC, = 0 and Sy > 0 is smooth and bounded. As ¢ — 0
the trajectories of (3) converge in probability to the trajectory of a corre-
sponding deterministic system.

The Zakas equation for an unnormalised conditional density ¢*(z,t) is

d'(st) = Aq'(0)+ hE (@04 (1), (5

¢‘(,0) = go(z),

where A; is the formal adjoint of the diffusion operator

= 'Z 31! + ZI.(:)———

0-1 =]

We assume throughout the following: f,h are bounded C*™ functions
with bounded derivatives of orders 1 and 2. Defining

plz.0) = exp (=24 (0h(2) '(2.1), ®)

2
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the rodust form of the Zakai equation is

2P, 1) - éAP'(Ia') + Dp'(z,t)¢"(=,1) + %V‘(z,t)p‘(z.o) =0, (7)

L P = g,
where
¢'(,0) = f(z) - y()DA(), Q
Vizt) = Zhlz) + () Ab() (9
1

~3¥(0)? [ Dh(z) [ + ediv(f(z) - y(t)Dh(z)).

Note that (7) is a linear parabolic PDE and the coefficient V¢ de-
pends on the observation path t — y(t). We shall omit the ¢-dependence
of y, and view (7) as a functional of the observation path y € )y =
C(10,T},R"; y(0) = 0). This transformation provides a convenient choice
of a version of the conditional density, and under our assumptions we can
recover the unnormalised density ¢‘(z,t) from solutions of (7); see for ex-
ample Pardoux [14].

Following Fleming and Mitter [6), who considered filtering problems
with € = 1, we apply the logarithmic transformation

S‘(z,t) = —elogp(z,t). (10)
Then S¢(z,t) satisfies
25(z,1) - I‘,As'(z,z) + H(z,1,DS*(z,1)) =0, 1)

5(z,0) = So(z),
where

He(z,1,)) = ,\g'(z,:)+§u|= —V¥(z,1). (12)

Equation (11) is a nonlinear parabolic PDE, which can be interpreted as
the Bellman equation for a stochastic control problem [6].
Formally letting ¢ — 0 we obtain a Hamilton-Jacobi equation

25(z.t) + H(z,t,DS(z,1)) = 0, (13)

3
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S(z,0) = S¢(z),

where

H(z.t,)) = Agolz,1) + % (AP -V(z,1), (14)

go(z,t) = f(z) - y(t) Dh(z), (15)

Vizt) = 3h(z) +y()DA(2)/(z) - 3u(t)* | Dh(z) [F. (16)

Note that g* — g;, V¢ —= V, and H* — H uniformly on compact subsets.
We shall interpret solutions of (13} in the viscosity sense. If we define
W(z,t) = S(z,t) - y(t)h(z), y € Ny, (17)

then, for y € floN C?, W(z,t) satisfies a Hamilton-Jacobi equation, which
in Section 3 is presented as the Bellman equation for the deterministic
estimation control problem.

Our main task is to prove that S — § as ¢ — 0 uniformly on compact
subsets. From this the asymptotic formula (2) will follow (Theorem 5.1).

3 Deterministic Estimation

We begin by reviewing Mortensen’s method {13}, [10] of deterministic min-
imum energy estimation.

Given an observation record Y; = {y(s), 0<s<t}, 0<t <T,of the
deterministic system

z = f(z) + 4, z(0) = zo, (18)
v = k(z) + v, y(0) = O,

we wish to estimate the state at time ¢, the initial condition z; being un-
known. Define

Jizoru,v) = so(zo)+§ [ “(1u(s) P +u(s)?) ds. (19)

A minimum energy input triple (zg,u*,v*) given Y, is a triple that minimises
J; subject to the constraint that the trajectory of (18) produces the output
V.. By replacing v(s) by y(s) — h(z(s)) in (19) and omitting the y(s)? term,

4




we can formulate an equivalent unconstrained optimal control problem.

Define .
Ji(ze,u) = S°(’°)+/° L(z(s),u(s), s)ds, (20)

where 1 ]
L(z,u,s) = 2 lu 2+ -2-h(:t)2 ~- y(s)h(z). (21)

We now minimise J; over pairs (zo,u). The determsnistic or minimum
energy estimate z(t) given Y, is defined to be the endpoint of the optimal
trajectory s — z°(s), 0 < s < ¢, corresponding to a minimum energy pair
(zo u’) ¢ Z(2) = z°(t).

Next, we use dynamic programming to study this problem. The controls
t — u(t) take values u € U = IR", and are square integrable. Given such a
control, let z, denote the corresponding trajectory (given a specified initial
condition). Following the genera] scheme presented in Fleming and Rishel
(7], define a class of admissible pairs (zo,u) by

Uge = {(z0,u) : z.(0) = 20, 24(t) = 2}; (22)

that is, pairs for which the corresponding trajectory passes through a spec-
ified point z at time t. Define & value function

Wi(z,t) = (‘o.ui)nef u.'.J.(zo,u). (23)

Note that this is a reversal of the standard set-up of dynamic programming
[7]. By using standard methods, we see that W(z,t) is continuous and
formally satisfies the Bellman egquation

2w (z,t) + H(z,t,DW(z,t)) = O, (24)
W(I,O) = SD(:)O

where N
H(z,t,2) = max {A(f(z) + u) = L(z,u,t)}. (25)

W (z,t) is the minimum value (if it is attained) of J; subject to the end
point condition z,(t) = z. To obtain £(t), one minimises W (z,t) over z:

W(z(t),t) € W(z,t)forallz€ R". (26)

5
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Notice that the definition (23) for W(z,t) makes sense for y € 2, N C!.
We can directly interpret (13) as the Bellman equation of another optimal
control problem (see (40)-(42) below), with S(z,t) as its value function.
This makes sense for all y € {1, since § does not appear. Thus defining
W (z,t) by (17) is valid for any y € 0. If y € 1, N C?, these definitions
coincide.

Now we prove that W (z,t) is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation (24). Our assumptions imply that f

. is a complete vector field. Therefore U,  # @ forallz e R", 0<t < T,
Y and consequently W(z,t) < co. We do not assume existence of optimal
'\ controls.
f.“:'\“ The following definition is taken from Crandall, Evans and Lions [4].
R Write C = C(R" x (0,T), IR), and similarly for C1.
. .
:'.'; Definition Let W € C. We say that W is a viscosity subsolution of (24)
';:S provided that for all ¢ € C? the followsing property holds:
," j if W — ¢ attains a local mazimum at a point (z,t), then
- 24(z,t) + H(z,t,D¢(z,t)) < O. (27)
A
:s: We say that W 4s a viscosity supersolution of (24) provided that for all
;: ' @ € C? the following property holds:
3' tf W — ¢ attains a local minimum at a point (z,t), then
s 24(z,t) + H(z,t,Dé(z,t)) > O. (28)
:: If W is both a wiscosity subslution and supersolution, we say that W is a
l!:‘_‘ viscosity solution of (24).
Sog
tf- Lemma 3.1 (Principle of Optimality) Let 0 < t;, < t; < t, and choose
7 (zo,u) € Ugy. Then
e
O [ 7]
@ W(zu(ta).tz) < W(zu(ts).t:) + /l L(zu(s),u(s),s)ds.  (29)
M 1
:':: Proof: Let (io,&) € Uzu(“).g.. Define
' 6
X /":.“'
o ,
N
o4
7
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_Ju(s) 0<s<ty
'\3 als) = { u(s) t;<s<t,.
R Then @ € Uz 1,).1,, and hence
»)

! W(zulta),ts) < So(i:,)-i- /O"L(z.-,(s),a(s),s)ds
i +/ QL(z.,(s),u(s),s)ds.
g o

Taking the infimum of the right hand side over (Z,,4) € Uz ¢,)¢, We Obtain
- (29). D

"‘, Fix (z,t) and choose v > W (z,t). Define
Iy
‘f‘.'o' Uz, = {(zo,u) € Uszs : Ji(z0,u) < v},
B, = {eR" :|z-12'|<¢}.
R
AHhY
o
3
Ve Lemma 3.2 Fiz ¢ > 0. Then there exists n > 0 such that ¢f (zo,u) € U],
) then z,(t — h) € B, for all0< h <.
N
e
95! Proof: Note that z,(t) = z € B,. Define
)
:?':‘, ne = sup{h >0 : z,(s) € B for all s € [t - h,1}}.
;%, Then | z,(t = n,) — z |[= €. Let
P inf
f:'.' TE enew,™
§
¥ We want to show that n > 0. Suppose not; n = 0. Then there is a sequence
AN T .
‘ (z3,u") € U], with n,, — 0 as n — oo. Write z, = z,,, etc.
7 Now f is continuous, so there is a constant X > Osuch that | f(z') < K
;'\3 for all z' € B,. Then
12 0<e= |z=zalt—mn)]
iy

o < [ (156 1+ 1 uate) D as

i ¥, t

7 < Kna + j L un(s) | ds
;5'\ t=nn
¢ Salad

7
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',\ | Choose N; > 0 such that n > Np implies Kn, < ¢/2. Then
A % t
Wl 0 <¢2K< / | un(s) | ds for n > No.
‘.) t fin
"" (Note that if U is bounded, then the lemma follows from this inequality.)
" Next, since (z7,u") € U], it follows that
AN t
J o luPds < .
t=n.
e Then
‘ ) t
;.. 0 < ¢2 < / | un(s) | ds
gy t=Nn
ol < VA forn > Ny, |
' !
T using the Cauchy-Schwarz inequality, which is impossible since /%, — O. ‘
~e Consequently n > O proving the lemma. D }
.’-
2 |
v Theorem 3.1 The value function W(z,t) defined by (23) is the unique |
‘:w, viscosity solution of the Hamilton-Jacobi-Bellman equation (24).
()
! ,:’ Proof: First we show that W (z,t) is a viscosity subsolution. Let ¢ € C?
i and suppose that W — ¢ attains a local maximum at (z,2). Then there
) exists € > 0 such that
| o W(z,t) - ¢(z,t) > W(',t') - ¢(z',1') (30)
E: forallz'€ B, |t—1t'|< e
"o Choose a constant control u(s) = u € U. There is an z, such that
® (zo,u) € Uge. Choose 0 < 6§ < € such that z,(s) € B, for |t — 5 [< 6. Set
p: t'=t-s, 2'=z,(t'). Select (z,u’) € Uy and define
> ' '
- TR u'(s) 0<s<t
20 i(s) { v t'<s<t
, o, The Principle of Optimality (29) implies
NS ' )
a9 W(z,t) < W(za(t - h),t - h) +/‘ Liz(s),i(s),8)ds.  (31)
)

)
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If 0 < h <6, then (30) gives

Wz, t) - ¢(z,t) 2 W(za(t—h),t—h)—@(zu(t = h),t - h). (32)
Combining (31) and (32) we obtain

$(zalt - h),i; h) - é(z,1) _ )1:/,(,. L(za(s), i (s), s)ds < 0.

Letting k — O we have
28(z,1) + Déx,t) (f(z) + v) — L(z,u,t) 0.

But this holds for all u € U, hence (27) and so W(z,t) is a subsolution of
(24).

To see that W(z,t) is a viscosity supersolution, let ¢ € C* and suppose
that W ~ ¢ attains a local minimum at (z,t). Then there exists an ¢ > 0
such that

W(z,t) -~ ¢(z,t) < W('t)-¢(z,1,) (33)

forallz’€ B, |t'-t|< e
Suppose, contrary to (28), that there exists 2 § > 0 such that

2 4(z,t) + H(z,t,Dé(z,t)) < -6 < 0.
By continuity, reducing € > 0 if necessary,
fo(z' 1) + max {D¢(z',t') (f(2) + u) - L(z",u,t)} < -6 <D (34)

forallz' € B,, | t—~1t'|< ¢. Let v > W(z,t) and let n be given as in Lemma
3.2. By the Principle of Optimality (29) we have

Wiz,t) = ( o'ui)nef m'{W(zu(t - h),t-h) +./:-!.;. L(z.(s),u(s),s)ds}. (35)

Let 0 < h < n A¢, and choose (zo,u) € U7, such that

Wiaut = Aht = A)+ [ Lizu(o)u(s)slds < W(z0)+ %’f (36)

Y
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Since z,(t - h) € B,, we have from (33)
W(zu(t — k).t = h) — ¢(zu(t ~ b),t — h) > W(z,1) — ¢(z,1). (37)

Combining (36) and (37) we have

6 < é(z.(t ~ h),t — h) - ¢(z,1) _

2 < = + [ Laehu(s) s, (38)

However,fort ~h < s<t,z,(s) € B,and |t - |< €, so from (34) we
have

5i9(2(5),8) + Dg(zu(s), 5) (f(zu(s)) + u(s)) ~ Lz (s),u(s),s) < ~6.
Integrating, we obtain

6(2,1) - $(zu(t = h),t ~ A
h

But (38) and (39) contradict each other, so we must have § < 0; proving
(28). Thus W(z,1) is a supersolution of (24).

The uniqueness assertion follows from Ishii [12], Theorem 1. In fact,
since Sq(z) is uniformly continuous, it follows that W'(z,t) is also uniformly
continuous. O

) _ %/‘ih L(zu(s),u(s),s)ds < ~8. (39)

Finally we state an optimal control problem for which S(z,t) is the
value function. Consider the dynamics

z = go(z,8) +u, z(0)= z,. (40)
We wish to minimise
tr71
I(zo,u) = So(zo) + /o (5 [u(s) [ +V(z.,(s),s)) ds.  (41)
Denote by 7, the corresponding class of admissible pairs (zo,u). Define
S(z,t) = (.mux)ng " Ii(zo,u). (42)

The above arguements can be used to prove the following.

Theorem 3.2 The value function S(z,t) defined by (42) is the unigue
viscosity solution of the Hamilton-Jacobi equation (13).

10




4 Some Estimates

Let S*(z,t) be the solution of
for | S | and | DS*
These estimates wil]

(11). In this section we obtain estimates
[ on compact subsets independent of the parameter e.
be used in Section 5 to prove that §¢ — §.

Theorem 4.1 For cvery compact subset Q C JR" x [0,T), there ezists
€ > 0and K > 0 such that Jor 0 < ¢ < ¢ we have

| S(z,t) | < K, for all (z,t) € Q,

< (43)
[DS‘(z,t)| < K, for all (z,t) € Q.

(44)

To prove (43), we use a comparison theorem which depends on the
;".."-f- maximum principle for linear parabolic PDE. Let By c R" denote the
::_::7 closed ball centred at 0 with radiys R > 0, writeT'g = Brx {0} UBBx x [0,T;
AR and define Qr = Br x [0, 7], denoting by Q% its interior.

-
o Lemma 4.1 (Maximum Principle, Friedman [10)) Define

0y

5 " € .

, Lw = fw- 24w+ Duk,

Al

-.?_ where b ¥s smooth. If Lw <0 (Lw >0) in QY, then

)

:-:f w(z,t) < sup w(z,s) ( infl  w(z,s) < w(z,t))

e (2.0) € Tp (0) € Ta

v for all (z,t) € Qp.

w3

ﬁ'-: Lemma 4.2 (Comparison Theorem) Let S* be a solution of (11), and

?’ define .

Y A d ¢ 2 ¢

‘: Llv = ,—,v-iAv-{-Dvg'-{»-z—lel ol A

Ok - -

'j" Let w=v-58 Jffv 20(Lv<0)in Q%, and if S¢ Sv(v< 8% on Ty,
’::i_ then S < v (v < §°) in Q5.

i :’;

£ 1

o

g

:’!t'

5

g

04
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Proof: If Lv >0, then

v - ;A + Dug + 2 (1Ds 2 - | De ) >0,

Now | DS* |* — | Dv |*= Dw (Dv + DS*)". Set
b = g'+%(Dv+DS‘).

Then Lw > 0 and on I'g, w(z,s) > 0. Hence w(z,t) > 0 for all (z,t) € Qg
by Lemma 5.1 O

Proof of Theorem 4.1: We now construct a function v such that fv > 0
in Q% and S < v on I'g, independent of (sufficiently small) ¢ > 0 (Evans-
Ishii {5]). Define

1

where the constants 4 > 0, M > 0 are to be chosen.
We write v, for v. , etc. Then

5 _€ 2n 8lz
Lv = p ((R"-— |z ?)? M (R*- |z 12)3>
2¢°z; 2|z ¢
LT e

1 1|z |2
2 ko€ ((R=- Iz T (R- 1z x=>=)
2|z
tE-lzpr C

> OinQ%,

for all small € > 0, provided u is chosen sufficiently large. Choose M so
large that

So(z) < M for all z € Bp.

Now v(z,t) — oo as | z |~ R uniformly in t € [0, T}, hence

S‘<vin Qy,
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and since v is continuous in Q%, there is a constant K > 0 depending on R
such that

S'(z,t) £ K for all (z,t) € Qg/2,
for all sufficiently small € > 0.
Similarly we can find a lower bound for S§¢ on Qg/s.

Next we estimate the gradient, using a variant of the techniques used

in Evans and Ishii |5), as suggested by Evans. To simplify the notation we
write v = S, which from (11) satisfies

FICT W D1 T R N A ——

2

1 .
v — %v..- A v,g' -V = 0, (46)

where we have used the summation convention. Let Q CC Q' cC R" x
(0,T), where Q, Q' are open and “CC” means “compactly contained in”".
Choose ¢ such that ¢ =1 on Q and ¢ = 0 near 9Q', and define

. z = ¢ty - Av (47)
. where the constant A > 0 is to be chosen.

Suppose that z attains its maximum over Q' at (zo,to) € Q'. Then we

R have
g z, = 0and (48)
‘ !
W 0< z- %z.z. (49)
&
v at the point (zo,10). Then at this point, using (49),
4 0 < 206vave + 2¢7vavas — Avy
":' = €6 Vals — ECGVLVE — 4€G VUL

i) ‘

-—tg’v,,.-v..- - ((,Ugvh\‘ + §/\v“

& < —eC¢? | D*v | +2¢%y, (v, - Sv..)

- 2 /s

>
k- +A (—v. + Ev.».-) +C l Dv lz

33 2
'- for ¢ sufficiently small. Using (46) we find that

. A

3 0 < ~u(sPuu) Rl (sPvave), + ¥t +Cs | Dy *

. +C | Dv [ +)2C | Dv | +AC.

g

13

.
L

A «weayR
$.900

- n ‘
LAOADNS ADBRGANEON ‘»'-“e .-
il

- b
o, ) 3’
: ) O000 17,0 0 V¢ G T AT,
RO OO PO MO (XA UG l";"t“l"h A B AN CT DR ?



5

This together with (48) implies

A
3 |Dv?€ C¢|Dv P+C|DvP+AC | Dv|+AC. (50)
Let

A = uplmax¢ | Dv| +1] (51)
Then

¢1Dv[* < | Dv [ [max | Dv | +1),
and from (50),

g[Dvl’g C|Dv|* +Ciy.

Choosing u so large that u/4 < u/2 - C, we have from (52)

(52)

[ Dv [P € CAat (20,t0). (53)

This implies

z < CAingQ.

(54)
If it happened that (zo,t0) € 0Q', then

\: z = ~2v < CAat (Ia,to),
‘,l and this also implies (54). But from (54),
‘) max¢? | Dv |’ < maxz+ CX < C),
L
1%
"§ and using the definition (51) we have
2; max¢? | Dv |* € Cu'maxg | Dv | +1)
‘:' . which implies
& ¢1Dv|<CinQ,
8 and hence
'y |Dv|< Cin Q.
W, This completes the proof of Theorem 4.1. D
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5 Main Result

We are now in a position to state and prove our main result.

Theorem 5.1 Under the above assumptions, we have
lim elog ¢'(z,1) = ~W(z,1) (55)

uniformly on compact subsets of R™ x [0,T!, where W(z,t) &s defined by

(17).

Proof: From Theorem 4.1 and the Arzela-Ascoli theorem, there is a sub-
sequence ¢; — 0 such that S* converges uniformly on compact subsets to
a continuous function §. By the “vanishing viscosity” theorem, Crandall
and Lions (3], S is a viscosity solution of (13). By uniqueness, Theorem
3.2,5=5. Infact, S* — S as ¢ — 0.

From this we have

!i_ga elogg*(z.t) = —(S(z,t) - y(t)h(z))

uniformly on compact subsets, for y € f}g. Using the definition (17) of
W (z,t) completes the proof. O

6 Large Deviations

We have seen that the optimal contro] problem associated with determin-
istic estimation plays a key role in studying the asymptotics of the Zakai
equation (5). In this section we shall see that this control problem is exactly
the variational problem arising in a large deviation principle for certain con-
ditional measures.

We begin by reviewing the results in Hijab [11]. Fix zo and consider
the stochastic differential equation (3), with initial condition z§ = z, for
all ¢ > 0. Let Qiity.20) be an unnormalised conditional measure on 1" =
C([0,T),R") of 2 given y € Ny and the initial condition z,. As in Section
3, given a control t — u(t), let z, denote the corresponding trajectory of
(18). Hijab [11] proved the following.

15
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Theorem 6.1 For any open subset O and any closed subset C of N,

lll'Tlionf(]OgQ:"v'O)(O) Z _I(iny’o)

lim sup €logQ5y.20)(€) < =I(z0,y,C)

uwhere for A C ",

. . 17 2 2
.. .\2 I(zo,y,4) = u'}f{ifo (I u(s) |* +h(z.(s)) )ds (56)
P T

2 - /o h(zu(s))dy(s) | 2u(0) = 2o, z. € A},
[}
o with the understanding that the infimum over an empty set is infinite.
.J:'_ Now let the initial conditions of (3) be random with unnormalised den-
3 sity defined by (4). Let Qe .co),y b€ an unnormalised joint conditional mea-
- sure of (z¢,z{) on 1" x IR" given y € ;.
é
.?‘,,ﬁ Theorem 6.2 For any open subset O and any closed subset C of N", and
R for any open subset O, and any elosed bounded subset Co of R™, we have
N A
e lir‘riigufelog Qlrzo)y (0 x00) 2 =J(0 x Oo,y) (57)
" lim sup ¢ log Qf, 4, (€ x Co) < ~J(C x Co,) (58)
% '
s where for A x A, C N" x R",

®
:" J (A x Ao,y) = inf {So(z0) + I(zo,y, A)}. (59)
-,j- 20€ A,
ot
'}
To prove this theorem we employ the following version of Laplace’s
N asymptotic method, adapted from Freidlin and Wentzell [8].
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Lemma 6.1 Let f: R" — R be Borel measurable, bounded below, and let
C. be a family of positive real numbers such that lim,_.oelog C, = 0. Then
Jor any Borel subset A and any bounded Borel subset B of IR™ we have

lirp__igmf( log /A C.exp (—%I(z)) dr > - 'izefo (=), (60)
lir?::pt log /B C.exp (-—:—](z)) dr < - .igfs f(z). (61)

Proof: Let m = inf,ea f(z). If m = oc, the result is clear; so assume
m < oc. For any é > 0 define

Ac = {zx€A: f(z)<m+§, |z]|< R},

where R is chosen large enough to ensure A; # 0. Then A; is a bounded
Borel subset of A, and

AC.exp(—-}](z))d.r > /A‘C.exp(—%(m+6))dz

2 K,;C.exp (—-:-(m + 6)) ,

o and hence
lim ionfclog/ C.exp (-—-:-[(z)) dz > —(m-6).
€~ A
N
e This holds for all § > 0, hence (60) follows.
‘;'.: Next, write m = inf,¢p and assume m < oc. Then
¢ “
o
' 1 1
¢ == < [ -= d ’
/;C exp( ‘f(z))dz < /;C exp( tm) z
from which (61) follows. O
%
»

Proof of Theorem 6.2: From Theorem 6.1, for any § > 0 there exists
¢ > O such that for 0 < ¢ < ¢p,

pea (0) 2 exp (—% ((z0.4.0) +5))..
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Then
Qeeot (0% 00) = [ @yg00) (0) di(20)éze

1
> / C.exp (——(Sg(zo)+l(zo,y,0)+6)) dz,
0o €
Applying (60) we have
lim inf elog Q{, 4.y, (O x Go) 2 —J(O x Oo,y) - &.

However, 6§ > O was arbitrary; hence (57).
The estimate (58) follows from

Qe (€) < exp (=3 (z0,9,0) - 6))

for € sufficiently small, using (61). D

Note that the variational problem (59) corresponds to the optimal con-
trol problem (18)-(23) discussed in Section 3. Theorem 6.2 implies that
the limiting measure is concentrated on the optimal initial condition z;
and optimal trajectory z°(s), 0<s<T.
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